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Abstract
In electromigration (EM) experiments on metallic wires, a flux of atoms can
lead to motion of the centre of mass (COM) of the wire. Hence, it may be
tempting to assume that the flow of current produces a net force on the wire as
a whole. We point out, on the basis of known momentum-balance arguments,
that the net force on a metallic wire due to a passing steady-state current is zero.
This is possible, because in addition to EM driving forces, acting on scattering
centres, there are counterbalancing forces, acting on the rest of the system.
Drift of the COM in EM experiments occurs inevitably because the substrate
keeps the crystal lattice of the wire fixed, while allowing diffusion of defects in
the bulk of the wire. This drift is not evidence for a net force on the wire.

Electromigration (EM) is the directionally biased diffusion of atoms caused by the presence of
an electric current. In EM experiments on pure metals it is common to see a flux of metal from
the cathode toward the anode end of the wire. At the anode end one often sees the formation of
hillocks due to the arrival of excess material. The centre of mass (COM) of the wire has moved
toward the anode during these experiments. It may therefore be tempting to imagine that the
current has produced a net body force on the wire as a whole, pushing it along the substrate.

On the basis of a self-consistent tight-binding formalism, we recently proposed that, in
the presence of steady-state conduction, the sum of current-induced forces over all atoms
in a system, consisting of two macroscopic electrodes connected by a metallic nanowire,
vanishes [1]. A version of this zero-sum rule (ZSR) for macroscopic conductors is discussed
for instance in [2, 3]. Nevertheless, in discussions with colleagues we have found that the
ZSR is not universally appreciated or accepted. We have found that it divides people into
two groups. Some find it obvious and trivial, while others find it highly counter-intuitive and
difficult to accept, because of the notion that the flow of current in a metal should exert a net
force on the metal as a whole, much like a jet of gas exerts a force on an obstacle in its way.

Here we point out that the ZSR for a macroscopic conductor follows from general
momentum-balance arguments, discussed for example in [2–7]. We consider a realistic
notional system, for which we attempt to state these arguments in a general way that imposes no
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restrictions on the structure, composition or temperature of the conductor. We have attempted
to elucidate the physics behind the ZSR and to point out the crucial conditions on which it
relies and which make metallic conduction different from other types of flow.

We consider a capacitor, consisting of two macroscopic electrodes, connected by a
macroscopic metallic wire. The transverse size of the wire is much smaller than that of
the electrodes. Electrons in the system have settled in a steady-state discharge through the
wire. The wire can have local structural and compositional variations. However, there is
a characteristic length scale, ξ , much less than any linear dimension of the wire, such that
after averaging over this length scale, the properties of the wire are homogeneous. Within the
above assumptions, we impose no restrictions on the structure, composition and temperature
of the wire, or on the nature of any disorder in it. Thus, nuclei in the wire may have arbitrary
identities. They may be free to vibrate thermally, or they may be frozen in arbitrary—possibly
artificial—non-equilibrium positions.

Sufficiently far from each wire–electrode contact we assume that the self-consistent
electronic structure in the bulk of the current-carrying wire can be described by a multiband
energy–momentum dispersion relation and a one-electron occupation function. For a given
structure and composition of the wire, and for a given macroscopic electron density, n, and
macroscopic current density, j , this dispersion relation and occupation function, averaged over
ξ , do not vary within the wire, at least to lowest order in j . An example of such a description
is given by the linearized Boltzmann equation in the relaxation-time approximation [8].

Consider a macroscopic volume, V , in the bulk of the wire, far from either wire–electrode
contact. All linear dimensions of V are much larger than ξ . We assume a priori that the
acceleration of V as a whole is zero. We will now prove the ZSR by arguing that no net
external force on V is needed to achieve this.

By the requirement of macroscopic charge neutrality in the bulk, n cannot vary
macroscopically over the surface of V . By the requirement of continuity of current, j

cannot vary macroscopically over the surface of V . Hence, the electronic band structure
and occupation function, discussed above, do not vary macroscopically over the surface of V .
It follows that there is no net electron momentum flux into V . Therefore, the total force on all
electrons in V , Fe, vanishes.

There are three contributions to Fe. First, all charges external to V create a field in V , E0.
Let FE0e be the total force exerted by E0 on all electrons in V . E0 may be a complicated
quantity containing contributions from any surface charges, and from any bulk polarization
charges, within the electrodes and within the wire, outside V . Second, the nuclei in V exert
forces on the electrons in V . Let Fze be the total force exerted by the nuclei in V on all electrons
in V . Third, there are forces on electrons in V due to other electrons in V . However, these
forces are pairwise and cancel. As stated above, the total force on the electrons in V vanishes,
or

Fe = FE0e + Fze = 0. (1)

Now consider the forces on the nuclei in V . Assuming overall charge neutrality in V , and
ignoring correlations between E0 and the charge density in V , we may write FE0z = −FE0e,
where FE0z is the total force exerted by E0 on all nuclei in V . Next, we have the force, Fez,
exerted on the nuclei in V by the electrons in V , given by Fez = −Fze. Nucleus–nucleus
interactions are pairwise and cancel. Let Fext be the total external force, if any, acting on all
nuclei in V . By assumption the acceleration of the nuclei in V as a whole is zero. Hence

Fz = FE0z + Fez + Fext = −Fe + Fext = 0 (2)

where Fz is the total force on all nuclei in V . Therefore, from equation (1)
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Fext = 0. (3)

Thus, no net external force on the volume V as a whole is needed to prevent it from accelerating
in the presence of steady-state electrical conduction. In other words, steady-state current flow
does not result in a net force on a macroscopic volume in a metallic conductor. This is the ZSR.

The ZSR relies on two essential conditions. The first, expressed by the relation Fe = 0
above, is that the net electron momentum flux into the volume V is zero. In a metal, this
condition is ensured by macroscopic charge neutrality and continuity of current. Consider
by contrast the example of a gas of non-interacting particles, fired at an array of obstacles.
Some of the incoming particles are reflected back by the obstacles, delivering momentum to
those obstacles. Therefore the gas momentum flux into the array will be different from the
gas momentum flux out of the array. The difference, given to the obstacles, results in a net
force on the obstacles as a whole. Observe, however, that in this example the concentrations
of gas particles on the left and on the right of the array of obstacles will be different, the
difference being proportional to the amount of reflection. This contrasts with an electron
current in a metal, where macroscopic charge neutrality demands that the steady-state electron
concentrations are the same macroscopically on either side of an obstacle. Similarly, the ZSR
will in general not be satisfied in calculations of current-induced forces in metals that do not take
account of the self-consistent redistribution of electron charge in the presence of current flow.
Self-consistency is essential to ensure macroscopic charge neutrality. The second condition
for the ZSR, expressed by the relation FE0z = −FE0e above, is that any external field, acting
on the electrons in V , should have an equal and opposite effect on the nuclei in V . By contrast,
in the above example, the device that gives the incident gas particles their initial momentum
does not exert an equal and opposite force on the obstacles.

The ZSR is possible because in addition to the EM forces on defects in a metal there
are counterbalancing forces on the surrounding lattice. Subject to the above conditions of
charge neutrality and continuity of current, these counterbalancing forces are such as to cancel
all forces acting on sources of resistivity in the metal. These counterbalancing forces were
emphasized by Landauer [5]. In Landauer’s analysis, the ionic subsystem is represented by
jellium, plus lattice vibrations, plus identical point defects embedded in the jellium. The
lattice vibrations are ripples in the jellium, or deviations from perfect jellium, and represent
the thermal motion of the atoms. Landauer analysed the forces in the presence of conduction
on the various components of this model system. He concluded that the total force on all point
defects in a volume V of the conductor is given by

Fd = −jen0(ρ − ρ0)V (4)

where n0 and ρ0 are the carrier density and resistivity of the pure defect-free metal, respectively,
and ρ is the resistivity of the metal with the defects. If, following Landauer’s analysis [5], we
add to Fd the forces exerted by the conduction electrons on the phonons in V , Fp, we obtain

Fd+p = Fd + Fp = −Een0V (5)

where E = jρ is the total self-consistent electric field in the metal, in the presence of current
flow. Fd+p is the total force experienced by all sources of resistivity—point defects and
phonons—in V . To find the total force on all positive charges in V , we must add to Fd+p

the force on the jellium, Fj = Een0V . Therefore, Fd+p+j = Fd+p + Fj = 0. This is the
ZSR in the framework of Landauer’s analysis. Part of the total self-consistent field E in the
conductor comes from electron polarization charges around each scattering centre [5,7]. Thus,
the force on the jellium, Fj , which counterbalances the forward force Fd+p, comes partly from
the electrons themselves [5, 7].

The significance of the counterbalancing forces in a current-carrying wire may be
seen by considering what would happen without them. If we consider only the force,
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Fd+p, on all sources of resistivity—defects plus phonons—then a light-bulb filament with
a cross-sectional area of the order of A = 0.01 mm2, under an applied bias W = 200 V, would
be subjected to a force of the order of Fd+p = Wen0A ∼ 104 N. In other words, an additional
force of that magnitude would be needed to keep the filament in place, in the presence of the bias.

The ZSR does not preclude the current-induced movement of some atoms. It stipulates
only that the sum of current-induced forces on all atoms in any macroscopic region of the
conductor vanishes. The atoms that move are those that experience a current-induced force
and that at the same time are able to move, such as interstitials or atoms adjacent to vacancies.
The current-induced force on a mobile atom introduces a bias in the activation energies for
migration, which results in drift and EM [9]. As is pointed out in [2], ‘EM is a relative
motion’: that of mobile atoms through the surrounding matrix. Current-induced forces may
also be thought of in terms of a current-induced stress field. This stress field may be highly
spatially inhomogeneous locally, resulting in net forces on individual atoms. However, this
stress field has zero net divergence over macroscopic volumes of the conductor, resulting in
zero net force over such volumes.

How the COM of a metallic conductor actually moves during EM depends on the details
of the experiment. For a metallic island connected to light flexible wires in free space, in
the absence of any other influences, the ZSR rule suggests that conduction through the island
will result in zero net acceleration of the island. Diffusion of mobile defects and EM may
still occur, resulting in mass transport within the island and possibly also in an overall change
in the shape and geometry of the island. However, any such current-driven deformation of
the island will occur without acceleration of its COM. For a metallic wire attached to a rigid
substrate, the substrate keeps the crystal lattice of the wire fixed, while allowing diffusion of
defects through the lattice. This will result in a drift of the COM. For directional diffusion of
defects in a lattice bonded to a rigid substrate, the COM will drift, whatever the driving force
for diffusion, and whether or not the ZSR is satisfied. Such drift does not contradict the ZSR.
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